440 research outputs found

    Reconfiguration of Distributed Information Fusion System ? A case study

    Get PDF
    Information Fusion Systems are now widely used in different fusion contexts, like scientific processing, sensor networks, video and image processing. One of the current trends in this area is to cope with distributed systems. In this context, we have defined and implemented a Dynamic Distributed Information Fusion System runtime model. It allows us to cope with dynamic execution supports while trying to maintain the functionalities of a given Dynamic Distributed Information Fusion System. The paper presents our system, the reconfiguration problems we are faced with and our solutions.Comment: 6 pages - Preprint versio

    Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome

    Get PDF
    This project is supported by the Université Grenoble Alpes in the framework of the proposal called Grenoble Innovation Recherche AGIR.Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is considered (volume between two horizontal flowlines). In the absence of velocity observations, this flow tube can be derived assuming that the flowlines follow the steepest slope of the surface, under a few flow assumptions. This method typically consists of scanning a digital elevation model (DEM) with a moving window and computing the curvature at the centre of this window. The ability of the 2.5-D models to account properly for a 3-D state of strain and stress has not clearly been established, nor their sensitivity to the size of the scanning window and to the geometry of the ice surface, for example in the cases of sharp ridges. Here, we study the applicability of a 2.5-D ice flow model around a dome, typical of the East Antarctic plateau conditions. A twin experiment is carried out, comparing 3-D and 2.5-D computed velocities, on three dome geometries, for several scanning windows and thermal conditions. The chosen scanning window used to evaluate the ice surface curvature should be comparable to the typical radius of this curvature. For isothermal ice, the error made by the 2.5-D model is in the range 0-10ĝ % for weakly diverging flows, but is 2 or 3 times higher for highly diverging flows and could lead to a non-physical ice surface at the dome. For non-isothermal ice, assuming a linear temperature profile, the presence of a sharp ridge makes the 2.5-D velocity field unrealistic. In such cases, the basal ice is warmer and more easily laterally strained than the upper one, the walls of the flow tube are not vertical, and the assumptions of the 2.5-D model are no longer valid.Publisher PDFPeer reviewe

    Integrating OPC Data into GSN Infrastructures

    Get PDF
    This paper presents the design and the implementation of an interface software component between OLE for Process Control (OPC) formatted data and the Global Sensor Network (GSN) framework for management of data from sensors. This interface, named wrapper in the GSN context, communicates in Data Access mode with an OPC server and converts the received data to the internal GSN format, according to several temporal modes. This work is realized in the context of a Ph.D. Thesis about the control of distributed information fusion systems. The developed component allows the injection of OPC data, like measurements or industrial processes states information, into a distributed information fusion system deployed in a GSN framework. The component behaves as a client of the OPC server. Developed in Java and based on the Opensaca Utgard, it can be deployed on any computation node supporting a Java virtual machine. The experiments show the component conformity according to the Data Access 2.05a specification of the OPC standard and to the temporal modes

    Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Get PDF
    Abstract. Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km  ×  130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF

    Video conference smart room: an information fusion system based on distributed sensors

    Get PDF
    International audienceThe needs for cross domain technologies called mecatronics have increased in the recent years and examples of mechanical tools directed by computers are now widely available. This paper gives an example of information fusion in the context of a video conference room and exposes two axes of the research. First it shows how to fuse information provided by several sources to locate a speaker. To do this, the system fuses data produced by video cameras and their associated image processing algorithm, with information resulting from signal processing algorithms applied on several micro-phones. Second, this article describes the distributed information fusion system (DIFS) used and the algorithm which decides where the speaker is located in order to allow focus on him. The whole application is managed by a new control system specifically developed for DIFSs. Some key points of the theoretical model on which the control is based are also given

    Daily allergic multimorbidity in rhinitis using mobile technology:a novel concept of the MASK study

    Get PDF
    Background: Multimorbidity in allergic airway diseases is well known, but no data exist about the daily dynamics of symptoms and their impact on work. To better understand this, we aimed to assess the presence and control of daily allergic multimorbidity (asthma, conjunctivitis, rhinitis) and its impact on work productivity using a mobile technology, the Allergy Diary. Methods: We undertook a 1-year prospective observational study in which 4 210 users and 32 585 days were monitored in 19 countries. Five visual analogue scales (VAS) assessed the daily burden of the disease (i.e., global evaluation, nose, eyes, asthma and work). Visual analogue scale levels <20/100 were categorized as "Low" burden and VAS levels ≥50/100 as "High" burden. Results: Visual analogue scales global measured levels assessing the global control of the allergic disease were significantly associated with allergic multimorbidity. Eight hypothesis-driven patterns were defined based on "Low" and "High" VAS levels. There were <0.2% days of Rhinitis Low and Asthma High or Conjunctivitis High patterns. There were 5.9% days with a Rhinitis High-Asthma Low pattern. There were 1.7% days with a Rhinitis High-Asthma High-Conjunctivitis Low pattern. A novel Rhinitis High-Asthma High-Conjunctivitis High pattern was identified in 2.9% days and had the greatest impact on uncontrolled VAS global measured and impaired work productivity. Work productivity was significantly correlated with VAS global measured levels. Conclusions: In a novel approach examining daily symptoms with mobile technology, we found considerable intra-individual variability of allergic multimorbidity including a previously unrecognized extreme pattern of uncontrolled multimorbidity

    Management of anaphylaxis due to COVID-19 vaccines in the elderly

    Get PDF
    Older adults, especially men and/or those with diabetes, hypertension, and/or obesity, are prone to severe COVID-19. In some countries, older adults, particularly those residing in nursing homes, have been prioritized to receive COVID-19 vaccines due to high risk of death. In very rare instances, the COVID-19 vaccines can induce anaphylaxis, and the management of anaphylaxis in older people should be considered carefully. An ARIA-EAACI-EuGMS (Allergic Rhinitis and its Impact on Asthma, European Academy of Allergy and Clinical Immunology, and European Geriatric Medicine Society) Working Group has proposed some recommendations for older adults receiving the COVID-19 vaccines. Anaphylaxis to COVID-19 vaccines is extremely rare (from 1 per 100,000 to 5 per million injections). Symptoms are similar in younger and older adults but they tend to be more severe in the older patients. Adrenaline is the mainstay treatment and should be readily available. A flowchart is proposed to manage anaphylaxis in the older patients.Peer reviewe

    ARIA‐EAACI care pathways for allergen immunotherapy in respiratory allergy

    Get PDF

    ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.Peer reviewe

    ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma a
    corecore